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1. INTRODUCTION AND STATEMENT OF RESULTS

This paper is concerned with the estimation of the L 1 norm of the difference
between a function of bounded variation and an associated Bernstein
polynomial, and with the analogous problem for a Lebesgue integrable
function of bounded variation inside (0, 1). A real-valued function defined
in the open interval (0, 1) is said to be of bounded variation inside (0, 1)
if it is of bounded variation in every closed subinterval of (0, 1). The class
of these functions will be denoted by B V*. To formulate some of the results,
we state the following lemma, which is a simple consequence of the well­
known canonical representation of a function of bounded variation.

LEMMA 1. A function f is in BV* if and only if it can be represented as
f = h - f2 , where fl and f2 are nondecreasillg real-valued functions on (0, 1).
Moreover, if f E BV*, the functions .ft and h can be so chosen that, for°< x < y < 1, the total variation off on [x, y] is the sum of the total varia­
tions offt and f2 on [x, y]:

f=j~-h, (1)

Iff is finite in the closed interval [0, 1], the associated Bernstein polynomial
of order n, denoted by Bn/, is defined by

where

n

Bn/(x) = L f(i/n) Pn.i(X),
i~O

(2)

(3)
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For f Lebesgue integrable on (0, I), we shall use the modified Bernstein
polynomials Pnf(x) = d/dx Bn+1F(x), where F(x) = f~j(y) dy. Explicitly
(see Lorentz [I, Chap. lID,

n I(i+1J/(n+1J
Pnj(x) = L (n + I) j(y) dy Pn.i(X).

i~O i/(n+1)

ForfE BV*, let

J(f) = rx 1/2(1 - X)I/2 I dj(x)l.
o

(4)

(5)

If f is represented in the form (1), we have J(f) = J(h) + J(f2)' If f is
nondecreasing,

I
I 1

J(f) = X1/2(1 - x)l/2 dj(x) = I j(x)(x - t) X-1/2(1 - X)-1/2 dx. (6)
o 0

THEOREM I. If f is a Lebesgue integrable function of bounded variation
inside (0, 1). then

where

rI Pn/(x) - j(x) I dx ~ CnJ(f),
o

(7)

Cn = 21/2(n + t)n+l/2(n + I)-n-l < (2/e)I/2n-l/2. (8)

Equality holds in (7) if and only if f is constant in each of the intervals (0, a)
and (a, 1), where a = t(n + I)-I or a = 1 - t(n + I)-I.

THEOREM 2. Let f be a step function with finitely many steps in every
closed subinterval of (0, 1), and such that the functions handf2 in the represen­
tation (1) are Lebesgue integrable. Then

l~~ n1/2I: I Pnf(x) - j(x)j dx = (2/7T)1/2 J(f),

irrespective of whether J(f) is finite or infinite.

(9)

Theorem 1 shows that the finiteness of J(f) is a sufficient condition for the
L 1 norm of the approximation error to be of order n-1 / 2• Theorem 2 implies
that the latter is guaranteed only if J(f) is finite when no restrictions beyond
fE BV* are imposed. It also shows that the upper bound in (7), with the
numerical constant (2/e)I/2 reduced to (2/7T)1/2, is asymptotically attained
for every fixed step function of the specified type.

If f is nondecreasing, the condition J(f) < 00 is stronger, but not much
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stronger than square integrability of f Explicitly (see [2, Appendix)), if f
is nondecreasing, J(f) < 00 implies f~J2(x) dx < 00 (but not conversely),
and f~J2(x){log(1 + Ij(x)I)}l+8 dx < 00 for some I) > °implies J(f) < 00.

Iff is nondecreasing and square integrable, we have for n ~ 2,

1 1 ) 1/2LI Pnj(x) - j(x)1 dx ~ C(n-110g n)1/2 (LJ2(x) dx , (10)

where C is an absolute constant. The proof of (10) is sketched at the end
of Section 2.

Iff is convex, (10) is true with log n removed (as can be shown by means
of Jensen's inequality).

Concerning the Bernstein polynomials (2), Theorem 1 immediately implies
the following. If F is the difference of two convex, absolutely continuous
functions on [0, 1] and if J(F') is finite, then var[o.1](BnF - F) = 0(n-1/2).

(I am indebted to Professor G. G. Lorentz for this observation.) We also
have the following analogs of Theorems 1 and 2.

THEOREM 3. Let f be of bounded variation in [0, 1]. Then

( [ Bnj(x) - j(x)! dx ~ CnJ(f) + (n + 1)-1 vaf[o.dj), (11)
• 0

where Cn is given by (8).

THEOREM 4. Let f be a step function of bounded variation in [0, 1] with
finitely many steps in every closed sub-interval of (0, 1). Then (9) holds, with
Pn replaced by Bn .

The upper bound in (11) can not be replaced by Cn-1/2J(f) with C an
absolute constant, as the following example shows. Let j(x) = b if°~ x < an < 1, j(x) = c (=I=b) if an ~ x ~ 1, where an = 0(n-1). By a
simple calculation,

rI Bnf - fl dx = I b - c In-1(1 + 0(1», J(f) = [b - c I a1j2(1 + 0(1».
o

Hence n1/2 f~ I Bnf - fl dxjJ(f) ,......, (nan)-1/2 -+ 00.

2. PROOF OF THEOREM 1

The modified Bernstein polynomial defined by (4) may be written in the
form

(12)
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(13)

and [u] denotes the largest integer ,s;; u. We note that

Let

rKn(x, y) dy = 1,
o

rKn(x, y) dx = I.
o

(14)

Hn(x, u) = rKn(x, y) dy. (15)
u

A simple calculation shows that for x, u E [0, 1),

Hn(x, u) = Dn(U) Gn,[(n+1)u]+l(x) + (l - Diu» Gn.[(n+l)u](x), (16)

where

Dn(U) = (n + 1) U -- [en + 1) u],

Gn.ix) = I Pn,i(X) = nrPn-Lk-l(t) dt,
i~k 0

k = 1,... ,n,

(17)

(18)

and Gn,o(x) = 1, Gn.n+1(x) = O.
Let x E (0, 1) be a continuity point off We have, from (12) and (14),

Pnf(x) - f(x) = rKn(x, y){f(y) - f(x)} dy
o

= -Jx Kn(x, y) rdf(u) dy +rKn(x, y) rdf(u) dy
o y x x

= -5: I: KnCx, y) dy df(u) + (I~ Kn(x, y) dy df(u).

Since J~ Kn(x, y) dy = 1 - Hn(x, u), we have

Pnf(x) - f(x) = -1: (l - Hn(x, u» df(u) + J: Hn(x, u) df(u). (19)

Hence

rI Pnf(x) - f(x)\ dx ,s;; fr(1 - Hn(x, u»1 df(u) I dx
o 0 0

+rrHn(x, u)1 df(u) I dx
o x

= rDn(u)1 t(f(u)l, (20)
o
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where

Dn(u) = Jl (1 - Hn(x, U» dx + rHn(x, U) dx. (21)
u 0

Therefore,

where

r[Pnf(x) - f(x)[ dx ~ CnJ(f),
o

Cn = sup U- l /2(1 - U)-1/2 Dn(u).
O::::;;u~l

(22)

(23)

From (15) and (14), it is easily seen that

Dn(u) = 2rHn(x, u) dx.
o

We now show that

Dn(u) = 2u(1 - u) Pn,[(n+1)u](u).

(24)

(25)

For k ~ (n + 1) u < k + 1 (k = 0, 1, ... , n), we have [en + 1) u] = k,
1 - on(u) = k + 1 - (n + 1) u, and, by (16) and (18),

Hn(x, u) = Gn,k+1(X) + (k + 1 - (n + 1) u) Pn,k(X).

Hence it is sufficient to show that the function

g(U) = rGn.k+1(x) dx + (k + 1 - (n + 1) u) rPn.k(X) dx - u(1 - U)Pn,k(U)
o 0

is identically zero.
It is easy to verify the identities

u(1 - u) p~.iu) = (k - nu) Pn.k(U),

Hence

g'(u) = Gn.k+1(u) - (n + 1) s:Pn,k(X) dx + (k + 1 - (n + 1)u) Pn,k(U)

- (1 - 2u) Pn,k(U) - u(1 - u) P~,k(U)

= Gn,k+1(U) - (n + 1) 5: Pn.k(X) dx + UPn,k(U),

g"(u) = npn-1,k(u) - (n + 1) Pn,k(U) +Pn.k(U) + UP~,k(U),

Thus g"(u) = 0, and since g(O) = g'(O) = 0, identity (25) is proved.
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For [en + 1) u] = k fixed, Ul /2(I - U)I/2 Pn,k(U) = G) Uk+l/2(1 - u)n-k+l /2

attains its maximum at U = (k + t)/(n + 1). Hence, by (25),

U-l /2(1 - U)-1/2 Dn(u) = 2Ul /2(1 - U)I/2 Pn,k(U)

:s;; 2 (Z) (k + t)k+l/2(n - k + t)n-k+l/2(n + 1)-n-l

Now

say. (26)

where

n - k (k + !Y+3/2(n - k - t)n-k-l/2
k + 1 (k + t)k+l/2(n - k + t)n-k+l/2

F(k)
F(n - k - 1)'

F(k) = (k + !)k+3/2 (k + 1)-1 (k + t)-k-l/2.

It is readily seen that

d
dk log F(k) = log(k + !) - log(k + t) - (k + 1)-1

is positive for k ?: O. Hence F(k) is strictly increasing. Therefore

Also, the left-hand side of (26) is equal to cn(O) if and only if u = t(n + 1)-1
or u = 1 - ten + 1)-1. Thus Cn , as defined by (23), is equal to the expres­
sions in (27). By (20), equality in (22) can hold only if f takes two values
and the saltus is at ten + 1)-1 or 1 - ten + 1)-1. A direct calculation shows
that equality does hold in this case.

The inequality in (8) is easily verified, completing the proof.
We now indicate the proof of inequality (10). It has been shown that

Dn(u) :s;; (2/e)I/2 n-l /2ul /2(1 - U)I/2. Hence, iff is nondecreasing,

r-' Dn(u) d I f(u)1 :s;; (2e)I/2 n-1/ 2r-' Ul/2(I - U)I/2 df(u).
• •

Integration by parts and application of Schwarz's inequality show that the
right side does not exceed

(
1 E)I/2 (II )1/2Cn-l /2 log~ oj2(u) du

for 0 < E :s;; 1/3. If we set E = (n + 1)-1, the remaining contribution to
f~ Dn(u) I df(u) I is of smaller order of magnitude, and (10) follows from (20).
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3. PROOF OF THEOREM 2
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For convenience of notation, the proof will be given for a step function!
with finitely many steps in every interval (0, S) with S < 1. For the general
case, the proof requires only trivial modifications. It is irrelevant how f is
defined at its points of discontinuity, and we may assume that

0= ao < al < "',

f(x) = b j if aj_l<x:(aj, j=I,2,...,

lim aj = I.
j-->a:>

(28)

Let

In(x, u) = Hn(x, u) - I

In(x, u) = Hn(x, u)

if °< u :( x < I,

if °< x < u < 1,
(29)

and let m be a fixed positive integer. By (19), if x E (0, I) is a continuity
point off,

Pnf(x) - f(x) = I In(x, ai)(bi+l - bi) +r In(x, u) df(u).
i=l a m+l-

Hence

where

rm

I Pnf(x) - f(x)1 dx = An + eRn,
o

I eI :( I, (30)

1 fam
R n = f I In(x, u)1 dx I df(u)].

am+l- 0

From (16) and (18) we obtain by straightforward calculation,

(31)

(32)

1

50 (x - U)2 dnHn(x, u) ~ 3u(1 - u) n-\ O:(u:(l.

Hence, ifO < x < u,

Hn(x, u) :( (u - X)-2 r(u - y)2 dvHnCY, u) :( 3u(1 - u)(u - X)-2 n-1.

o

For u < x < 1, we have the same upper bound for 1 - Hn(x, u), so that

I In(x, u)1 :( 3u(1 - u)(u - X)-2 n-1, o < x, u < 1. (33)
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From (32) and (33), we have

R n :::::; 3(am+l - am )-2 n-1r(1 - u) I df(u)l.
0+

The last integral is finite since.h and h in (1) are Lebesgue integrable. Hence
Rn = D(n-1) and

(34)

Let ai-l < x < (aJ-! + ai)/2. Then, by (33), In(x, ai) = D(n-1) if i *- j - 1,
uniformly in x for i = 1,... , m. Hence

m

L In(x, ai)(bi+l - bi) = (Hn(x, aJ-!) - 1)(bi - bi- 1) + D(n-1)

i=1

'f ai-l + ai
1 ai-l < x < 2 ' (35)

for j = 1,... , m, uniformly for x E (0, am)' (For j = 1, the first term on the
right is zero.)

In a similar way, it is seen that

m

L In(x, ai)(bi+l - bi) = Hn(x, ai)(bH1 - bi) + D(n-1)

;=1
'f ai-l + ai
1 2 < x < ai'

for j = 1,... , m, uniformly for x E (0, am).
It follows that

(36)

+ .I I bH1 - bi I (; Hn(x, ai) dx + D(n-1). (37)
,~1 (a;_1+ a ;l/2

Another application of (33) shows that if the upper limits of integration
in the first sum in (37) are replaced by 1 and the lower limits in the second
sum by;O, then a term of order n-1 is added. Hence

(38)
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With (34), (21), and (24), we thus have

a m-lf m I Pnf(x) - f(x) I dx = I. Dn(a;) I bj+l - b; I
o ;~1
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For U E (0, 1) fixed, we have by (25) and Stirling's formula

Inserting this expression in (39) and recalling (28), we obtain

rm

I Pnf(x) - f(x)1 dx = (2/1T)1/2 n-1/2 \rm

X1/2(l - X)1/21 df(x) I
0 1 0

+ ~rm
+ x 1/2(l- X)1/21 df(x) II+ o(n-1/2).

am

(40)

If l(f) = 00, the first integral on the right side of (40) may be made as
large as we please by choosing m sufficiently large, and (9) is proved in this
case.

Let l(f) < 00. Given a positive E, choose 7J = 7J(E) E (0, 1) so that
f~ x1/2(l - X)1 /2 I df(u)1 < E and so that 7J is not a point of discontinuity
of f Let hex) = f(x) if 0 < x ~ 7J, hex) = f(7J) if 7J < x < 1, and let
Nx) = I(x) - hex). Then

and S~ I Pnf- f Idx differs from S~ I Pnh - 11 Idx by at most S~ I Pnh - 12 Idx.
Since h has finitely many steps, (40) with f = h implies

1 _ _ 2 1/2 _

lim n1/2 f I Pnf1 - 11 I dx = (-) 1(f1)'
n-H.O 0 'iT

By Theorem 1,

n1/2riPnl2 - 12 I dx ~ (2/e)1/2 J(j2) < (2/e)1/2E •

o

Since E is arbitrary, these facts imply (9). The proof is complete.
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4. PROOF OF THEOREMS 3 AND 4

Since a function of bounded variation can be represented in the form (1),
and f I Bnf - f I dx ~ L~~I f I Bnh - h I dx, we may assume in the proof
()f Theorem 3 thatfis a nondecreasing function. By (4),

n

Pnf(x) = L cn.;Pn.;(x),
;~O

Since f is nondecreasing,

i i + 1J( n + 1 ) ~ cn ,; ~f( n + 1 ),

J
(i+ll/(n+!l

Cn ,; = (n + 1) f(y) dy.
i/(n+l)

f( i ) ~ f(~) ~ f( i + 1 )
n+1 "" n "" n+1'

i = 0,... , n.

Hence I cn ,; - f(ijn)1 ~f((i + l)j(n + 1)) - f(ij(n + 1)) and therefore

( I Pnf(x) - Bnf(x)I dx ~ ~o( Icn.; - f( ~) IPn,;(x) dx

~ ±\f ( i + 1 ) _ f (~) I (n + 1)-1
;~o I n + 1 n \

= varro.ll(f)(n + 1)-1.

Inequality (11) now follows from

(41)

JI I Bnf(x) - f(x) Idx ~rI Pnf(x) - f(x)1 dx + rI Bnf(x) - Pnf(x)Idx
o 0 0

and Theorem 1.
The conditions of Theorem 4 imply those of Theorem 2, and Theorem 4

follows from (9) and (41).
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